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Abstract

Oncogene-induced senescence (OIS), characterized by irreversible cell cycle arrest by oncogene activation, plays
an important role in the pathogenesis of aging and age-related diseases. Recent research indicates that OIS is
driven by activation of mitogen-activated protein kinase (MAPK). However, it is not apparent whether MAPK
inhibition helps to recover senescence. In our previous study, we uncovered p38 MAPK inhibitor, SB203580, as
an effective agent to reduce reactive oxygen species and increase proliferation in premature senescent cells. In
this study, we evaluated whether SB203580 could ameliorate senescence in normal senescent cells. The
senescence-improving effect was observed in the results that SB203580 treatment restored lysosomal function, as
evidenced by a decrease in lysosomal mass and an increase in autophagic vacuoles. Then, SB203580-mediated
lysosomal function restoration triggered the clearance of damaged mitochondria, leading to metabolic repro-
gramming necessary for amelioration of senescence. Indeed, p38 MAPK inhibition by SB203580 improved key
senescent phenotypes. Our findings suggest a novel mechanism by which modulation of p38 MAPK activity
leads to senescence improvement through functional restoration of lysosome and mitochondria.
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Introduction

Somatic cells can divide only for a limited time and
become senescent as the number of divisions increases,

losing their reproductive capacity.1 Thus, replicative senes-
cence is a type of irreversible growth halt linked to decreased
replication capacity.2 Oncogene-induced senescence (OIS) is
recently discovered to cause replication-independent senes-
cence. Specifically, oncogene activation induces hyperproli-
feration followed by replicative senescence.3

In human fibroblasts, OIS was primarily observed after
oncogenic Rat sarcoma virus (RAS) activation.4 In particular,
oncogenic RAS initiates the RAS-rapidly accelerated fibro-
sarcoma (RAF)-MAPK/ERK kinase (MEK)-extracellular

signal-regulated kinase (ERK) signaling cascade, activating
p53, resulting in cell cycle arrest.5 Numerous investigations
have demonstrated that the RAS-induced OIS is driven by
the mitogen-activated protein kinase (MAPK) pathway,
which functions downstream of the RAS-RAF-MEK-ERK
cascade.6,7 Our prior research showed that BRAF inhibition
successfully reduced senescence by inhibiting the RAS-
RAF-MEK-ERK signaling cascade.8 Given that the MAPK
is the pathway that is downstream of the RAS-RAF-MEK-
ERK signaling system, it is also important to examine if
inhibiting the MAPK pathway appropriately will recover
senescence.

MAPKs are serine and threonine protein kinases that
play key roles in several signaling pathways, including
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those that control cell differentiation, division, and pro-
liferation.9 One of the main MAPK pathways is p38
MAPK, which was first revealed as a modulator of in-
flammatory and stress responses.10 p38 MAPK has four
isoforms consisting of p38a, p38b, p38c, and p38d, each
encoded by a separate gene. These isoforms are distinct
from one another regarding tissue distribution and regu-
lation by upstream stimuli.

Cellular organelles that undergo the most obvious alter-
ations during senescence are the lysosomes and mitochon-
dria.11 While mitochondria gradually change in both
structure and function, lysosomes progressively alter the
structure and function.12 A buildup of dysfunctional mito-
chondria results in an overabundance of reactive oxygen
species (ROS) production. The electron transport complex
(ETC) in mitochondria is harmed by ROS as a result.13 The
ETC dysfunction lowers oxidative phosphorylation (OX-
PHOS), which lowers the effectiveness of adenosine tri-
phosphate (ATP) synthesis. Senescent cells rely more on
glycolysis than OXPHOS as a source of ATP energy to
replenish ATP deficiency.8,14 ROS make it more difficult for
defective mitochondria to be cleared.15 Lysosomes are also
targeted by excess ROS, which compromises their func-
tionality.16,17 This harmful feedback loop between mito-
chondria and lysosomes accelerates and exacerbates
senescence. These findings suggest that a ground-breaking
therapy to recover senescence may involve the correct
regulation of the feedback loop between them.

In a recent study, we discovered SB203580, a p38 MAPK
inhibitor, which causes premature senescent cells to prolif-
erate more and produce less ROS.18 However, it is not yet
known whether this drug promotes senescence amelioration
even in normal senescent cells. In this study, we demon-
strated that p38 MAPK inhibition by SB203580 can control
the senescence process by regulating lysosomal and mito-
chondrial function.

Materials and Methods

Statement of informed consent

There are no human subject in this article and informed
consent is not applicable.

Cell culture

The American Type Culture Collection (Manassas, VA,
USA) provided the human diploid fibroblasts (PCS-201-010)
for this work. Cells were grown as previously mentioned.8

Cells were serially passaged at a 1:4 dilution during early
passages and a 1:2 dilution during late passages. When the
population doubling time of the cells was more than 14 days
and less than 2 days, the cells were considered senescent and
young, respectively. The final concentration of SB203580
(S1076; Selleck Chem, Houston, TX, USA) and DMSO
(D8148; Sigma, St. Louis, MO, USA) in the culture medium
was 0.5 lM and 1.4 mM, respectively. Cells were exposed to
DMSO or SB203580 for 21 days before the functional test.

Cell proliferation assay

Cell proliferation assay was carried out in 96-well plates
(353072; Corning, Glendale, AZ, USA) at a cell density of
2000 cells per well. To precisely count the number of cells,

a cell proliferation assay based on a DNA content-based
approach was used.19

Western blot analysis

Western blot analysis was performed as described previ-
ously.20 The primary antibodies used in this study included
the p38 MAPK antibody (9212; 1:500 dilution; Cell Sig-
naling Technology, Danvers, MA, USA), AKT antibody
(9272; 1:500 dilution; Cell Signaling Technology), phospo-
AKT antibody (4058T; 1:500 dilution; Cell Signaling
Technology), and HRP-conjugated b-actin (sc47778; 1:1000
dilution; Santa Cruz). The secondary antibodies included the
HRP-conjugated anti-rabbit antibody (sc-2357; 1:1000 di-
lution; Santa Cruz).

Measurement of ROS and mitochondrial mass

To determine the level of ROS, cells were incubated at
37�C for 30 minutes with media containing 5 lM MitoSOX
(M36008; Life Technologies, Carlsbad, CA, USA). Then,
cells were processed for FACS analysis as previously ex-
plained.21 To determine the level of mitochondrial mass, cells
were incubated at 37�C for 30 minutes with media containing
50 nM MitoTracker Deep Red (M22426; Life Technologies).

Flow cytometric analysis of cellular lipofuscin levels

Most unsaturated fatty acids are attached to proteins, where
they are then peroxidized to create lipofuscin. Lipofuscin
exhibits autofluorescence due to the Schiff base created by
the interaction between carbonyl and amino molecules.22 The
widely used technique for lipofuscin quantification is auto-
fluorescence assessment.23–26 A 530/30 nm bandpass filter
with excitation at 488 nm was applied in flow cytometry to
measure autofluorescence. The outcomes were examined
using the program Cell Quest 3.2 (Becton Dickinson).

Measurement of lysosomal mass
and autophagic vacuoles

Lysosomal mass was measured as described previously.27

The level of autophagic vacuoles was assessed using Cyto-
ID as previously mentioned.28

Immunofluorescence

On chamber slides (30104; SPL, Pocheon, Korea), cells
were plated for immunofluorescence. Cells were permeabi-
lized for 15 minutes with 0.1% Triton X-100 in phosphate-
buffered saline (PBS) after being fixed for 15 minutes with
4% paraformaldehyde in PBS. A blocking procedure using
10% fetal bovine serum in PBS was carried out at room
temperature for 1 hour. The rabbit anti-LC3B antibody (2775;
1:200 dilution; Cell Signaling Technology) and mouse anti-
total OXPHOS antibody (AB110411; 1:1000 dilution; Ab-
cam, Cambridge, United Kingdom) were used to incubate
cells at 4�C overnight. Subsequent procedures in immuno-
fluorescence were performed as described previously.8

Analysis of the oxygen consumption rate (extracellular
acidification rate)

The XFe24 flux analyzer (Seahorse Bioscience XFe24
Instrument; Seahorse Bioscience, Billerica, MA, USA) was
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used. Briefly, 5 · 104 cells were placed in each well of an
XFe24 cell-culture plate (100850-001; Seahorse Bioscience)
and examined as previously described.8

Senescent-associated b-galactosidase staining

Senescent-associated b-galactosidase (SA-b-gal) staining
was performed according to the manufacturer’s protocols
(9860; Cell Signaling Technology, Beverly, MA, USA).

Statistical analysis

Statistical analysis was carried out using SigmaPlot 12.5
(Systat Software, San Jose, CA, USA). The Student’s t-test
and two-way analysis of variance (ANOVA) followed by
Bonferroni’s posttest were used to determine the signifi-
cance of differences.

Results

Confirmation of senescence amelioration by p38
MAPK inhibition

SB203580, a p38 MAPK inhibitor, has been identified as
a candidate reagent to increase cell proliferation and de-
crease ROS in premature senescent cells.18 In this study, we
investigated whether this reagent would be effective in
ameliorating senescence in normal senescent cells.

Optimal levels of p38 MAPK inhibition were assessed by
treating normal senescent cells with different concentrations
(0–2 lM) of SB203580. The effect on cell proliferation was
significantly higher at the 0.5 lM concentration (Supple-
mentary Fig. S1). Based on this result, the 0.5 lM concen-
tration was chosen for the subsequent tests.

The specificity of SB203580 as a p38 MAPK inhibitor was
investigated before further experiments. SB203580 inhibits
p38 MAPK catalytic activity and activation of protein kinase

B (known as AKT).29 Recent studies have shown that p38
MAPK plays an upstream signaling role regulating AKT at
the protein and transcription level, suggesting a cross talk
between them.30 Therefore, to identify the specificity of
SB203580 as a p38 MAPK inhibitor, we evaluated the ex-
pression levels of p38 MAPK, AKT, and phospho-AKT.
SB203580 did not reduce the expression levels of p38 MAPK
and AKT, whereas SB203580 reduced phospho-AKT levels
(Supplementary Fig. S2). These data suggest that SB203580
specifically inhibited p38 MAPK catalytic activity, resulting
in reduced phosphorylation levels of AKT, which function as
a downstream signal pathway of p38 MAPK, without in-
hibiting the expression of p38 MAPK and AKT.

To confirm the SB203580-mediated proliferation-
inducing effect observed in premature senescent cells, cell
proliferation was evaluated at various time points (0–16
days). Cell proliferation was significantly increased upon
SB203580 treatment, suggesting that SB203580 abolished
cell cycle arrest in normal senescent cells (Fig. 1A).

We then investigated whether SB203580 would reduce
ROS levels in normal senescent cells. To detect ROS, es-
pecially superoxide anions, cells were stained with a me-
dium containing 5 lM MitoSOX. Senescent cells had higher
ROS levels than young cells, confirming the senescence-
associated ROS increase (Fig. 1B).31 Treatment with
SB203580 significantly decreased ROS levels in normal
senescent cells (Fig. 1B).

p38 MAPK inhibition leads to the restoration
of lysosomal function

Since we confirmed the increase in cell proliferation and
the reduction in ROS in normal senescent cells, we inves-
tigated how SB203580 affects different senescent pheno-
types. The accumulation of lipofuscin, one of the prominent

FIG. 1. Confirmation of senescence amelioration by p38 MAPK inhibition. (A) Cell proliferation was assessed at different
times (0–16 days) to confirm the SB203580-mediated proliferation-inducing effect observed in premature senescent cells.
The level of cellular proliferation was measured quantitatively using a DNA content-based method. (**p < 0.01, two-way
ANOVA followed by Bonferroni’s posttest). Mean – SD, N = 6. (B) Flow cytometric analysis of mitochondrial ROS using
MitoSOX (*p < 0.05, **p < 0.01, Student’s t-test). Means – SD, N = 3. ANOVA, analysis of variance; MAPK, mitogen-
activated protein kinase; ROS, reactive oxygen species; SD, standard deviation.
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senescent phenotypes, was examined.32 The level of lipo-
fuscin was determined by measuring the amount of intra-
cellular autofluorescence.33 After treatment with SB203580,
autofluorescence levels significantly decreased, suggesting
that SB203580 inhibited the buildup of lipofuscin in se-
nescent cells (Fig. 2A).

An autofluorescent material called lipofuscin slowly ac-
cumulates in lysosomes. Lysosomes filled with lipofuscin
act as sinks for newly formed hydrolases, increasing the
lysosomal mass as nonfunctional lysosomes increase.34 So,
we checked to see whether SB203580 had any impact on the
lysosomal mass. Indeed, SB203580 significantly decreased
lysosomal mass, indicating a reduction in nonfunctional
lysosomes (Fig. 2B).

Restoration of lysosomal function facilitates autophagic
activity and initiates autophagy-dependent substrate clear-
ance.35–37 Because we found a reduction in nonfunctional
lysosomes, we further examined how SB203580 affects
autophagic activity, measurable in the amount of autophagic
vacuoles.38 The level of autophagic vacuoles increased
significantly after SB203580 treatment, demonstrating that
SB203580 restored autophagy activity (Fig. 2C).

Activation of mitophagy through p38 MAPK inhibition
to eliminate dysfunctional mitochondria

A functional lysosomal/autophagy system is essential to
clear dysfunctional or damaged mitochondria.39 We there-
fore investigated whether the clearance of malfunctioning
mitochondria is triggered by repair of the SB203580-
mediated lysosomal/autophagy system. Mitochondrial mor-
phology was viewed using antibodies to total OXPHOS
proteins, and autophagy was viewed using antibodies to the
autophagic protein, microtubule-associated protein 1 LC3B.

Compared with young cells, senescent cells showed a
more branching mitochondrial morphology (Fig. 3A). LC3B
and mitochondria colocalized in young cells, but this colo-

calization was infrequent in DMSO-treated senescent cells
(Fig. 3A). However, SB203580 treatment caused colocali-
zation of LC3B and mitochondria to reappear (Fig. 3A;
white arrows). Senescent cells had a higher level of mito-
chondrial mass than young cells, supporting the senescence-
associated increase in mitochondrial mass (Fig. 3B).40 The
simultaneous reduction in mitochondrial mass was shown in
SB203580-treated senescent cells, suggesting that mito-
phagy, an autophagic mechanism that selectively degrades
defective mitochondria, was triggered (Fig. 3B).

To determine if the reconstituted lysosomal/autophagy
system activates mitophagy, cells were cotreated with chlo-
roquine, a drug that inhibits autophagy flux.41 Young cells
and SB203580-treated senescent cells increased colocaliza-
tion, whereas DMSO-treated senescent cells did not (Fig. 3C;
white arrow). These findings suggest that restoration of the
lysosomal/autophagy system through SB203580 activated
mitophagy.

Inhibition of p38 MAPK restores metabolism
by reducing glycolysis dependence

The preservation of mitochondrial function is achieved by
the efficient elimination of damaged mitochondria through
mitophagy.42 Consequently, the elimination of damaged
mitochondria reduces ROS generation.13 As we observed
the appearance of mitophagy and reduction of ROS by
SB203580, we evaluated whether mitochondrial metabolism
was restored by SB203580. To indirectly monitor changes in
mitochondrial metabolism, we measured the level of gly-
colysis, which can be determined by monitoring the extra-
cellular acidification rate (ECAR). The substances (glucose,
oligomycin, and 2-deoxy-d-glucose [2-DG]) were serially
injected to determine the glycolysis rate, comprising gly-
colysis and glycolytic capacity. DMSO-treated senescent
cells showed higher ECAR values than young cells after
glucose and oligomycin injection, suggesting that DMSO-

FIG. 2. p38 MAPK inhibition leads to the restoration of lysosomal function. (A) Flow cytometric analysis of auto-
fluorescence (**p < 0.01, Student’s t-test). Mean – SD, N = 3. (B) Flow cytometric analysis of lysosomal mass using
LysoTracker Green (**p < 0.01, Student’s t-test). Mean – SD, N = 3. (C) Flow cytometric analysis of autophagic vacuoles
using Cyto-ID (**p < 0.01, Student’s t-test). Means – SD, N = 3.

294 PARK ET AL.

D
ow

nl
oa

de
d 

by
 K

or
ea

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

9/
23

/2
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



treated senescent cells exhibited higher glycolysis and gly-
colysis capacity, respectively (Fig. 4A–C). These data in-
dicate that DMSO-treated senescent cells rely more on
glycolysis as an energy source than young cells.

However, after SB203580 treatment, ECAR values were
significantly decreased compared with a DMSO control, indi-
cating a decrease in glycolysis dependence, a common phe-
nomenon of mitochondrial metabolic recovery (Fig. 4A–C).

p38 MAPK inhibition ameliorates
senescence phenotypes

Metabolic reprogramming was proven to be necessary for
senescence amelioration.8 As we identified metabolic re-

programming with a reduced dependence on glycolysis by
SB203580, we examined whether SB203580 treatment
would ameliorate senescent phenotypes. Since senescence is
usually diagnosed using a surrogate measure of SA-gal ac-
tivity,43 the proportion of SA-gal-positive cells was exam-
ined. DMSO-treated senescent cells had a higher proportion
of SA-b-gal-positive cells than young cells, whereas
SB203580 treatment significantly reduced the proportion in
senescent cells (Fig. 5A).

Finally, since the increase in cell surface area is one of the
most noticeable senescent phenotypes,44 the morphological
changes following SB203580 treatment were examined.
Young cells showed the tiny spindle-shaped structure (red
arrows), whereas DMSO-treated senescent cells showed

FIG. 3. Activation of mitophagy through p38 MAPK inhibition to eliminate dysfunctional mitochondria.
(A) Immunostaining for LC3B (green) and mitochondria (red) (scale bar 10 lm). Mitophagy is indicated by white arrow.
(B) Flow cytometric analysis of mitochondrial mass using MitoTracker Green (**p < 0.01, Student’s t-test). Mean – SD,
N = 3. (C) Immunostaining for LC3B (green) and mitochondria (red) after CQ treatment (scale bar 10 lm). Mitophagy is
indicated by white arrow. CQ, chloroquine; LC3B, light chain 3B.
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broad and flat structures (dotted line) (Fig. 5B). Treatment
with SB203580 markedly recovered the morphology of se-
nescent cells to a tiny spindle-shaped structure (red arrows)
(Fig. 5B).

Discussion

Lysosomal dysfunction reduces mitochondrial turnover,
increasing the production of ROS, which attack the lyso-
some.34 Lysosomes and mitochondria are thus trapped in a
vicious feedback loop that exacerbates senescence pheno-
types. The extent of senescence has been regulated by fine-
tuning the interaction between lysosomes and mitochondria.
The importance of this cross talk on the regulation of se-
nescence is supported by the discovery that lysosomal re-

acidification through the attenuation of ataxia telangiectasia
mutant activity accelerated the clearance of defective mi-
tochondria, which in turn reversed the senescent pheno-
types.14 Furthermore, these findings are highlighted by other
studies that the trehalose, a mitophagy inducer, improved
mitochondrial quality and reduced age-related atheroscle-
rosis in mice.45

Therefore, learning how to regulate the interactions be-
tween lysosomes and mitochondria could be the key to
establishing therapeutics for age-related diseases and aging
itself. In this study, we demonstrated that modulation of
cross talk by p38 MAPK inhibition mediates a unique
strategy to alleviate senescence. Notably, p38 MAPK in-
hibition promoted the restoration of lysosomal function,
triggering the clearance of defective mitochondria. Effi-
cient removal of damaged mitochondria restored mito-
chondrial function by reducing dependence on glycolysis, a
phenomenon known to be necessary for improving senes-
cence.8 Our study provides the first evidence that p38
MAPK inhibition triggers functional recovery of lyso-
somes and mitochondria, demonstrating that modulating
cross talk between lysosomes and mitochondria by con-
trolling p38 MAPK activity is an effective therapeutic
strategy for senescence.

Mitochondria function as intracellular ATP energy pro-
ducers. They are now understood to be a vast signaling
platform that regulates a number of significant cellular and
physiological activities.46 Recently, there is increasing evi-
dence that mitochondria are not only an energy-producing
unit, but also support a more important function in the
regulation of senescence.14,18,47,48 In particular, reducing the
activity of certain protein kinases restored mitochondrial
function to the status of young cells and postponed the
progression of senescence. For example, suppression of the
rho-associated protein kinase (ROCK) lowered ROS gen-
eration while also restoring mitochondrial function.18,47

This inhibition also changed the energy source’s depen-
dence from glycolysis to OXPHOS. In addition, BRAF
inhibition caused metabolic reprogramming and mitochon-
drial functional recovery, which are two crucial aspects that
are disrupted in senescent cells.8 Metabolic reprogramming
through BRAF inhibition served as a prerequisite for se-
nescence improvement.

Consistent with these findings, we found that inhibition of
p38 MAPK induced metabolic reprogramming accompanied
by improved senescence. In particular, p38 MAPK inhibi-
tion blocked the malignant feedback loop between lyso-
somes and mitochondria, reducing mitochondrial damage
while reducing reliance on glycolysis. Given that modulat-
ing protein kinase activity can improve aging while
achieving metabolic reprogramming, controlling the activity
of protein kinases such as ROCK, BRAF, and p38 MAPK in
various combinations may be a more efficient approach.

MAPK controls cell survival, proliferation, and differen-
tiation through downstream signaling molecules, and cel-
lular senescence is also one of the factors controlled by
MAPK.49 In the presence of senescence-inducing stimuli,
MAPKs act as sensors that determine whether to induce
cells to apoptosis, senescence, or other responses. When
cells are determined to adopt a senescence response, MAPK
participates in the implementation of gene expression pro-
grams that allow indefinite growth arrest, including

FIG. 4. Inhibition of p38 MAPK restores metabolism by
reducing glycolysis dependence. (A) Measurement of
ECAR (black line: DMSO-treated senescent cells, red line:
SB203580-treated senescent cells, blue line: young cells).
(*p < 0.05, two-way ANOVA followed by Bonferroni’s
posttest). Mean – SD, N = 3. (B) Measurement of the gly-
colysis level (*p < 0.05, **p < 0.01, Student’s t-test).
Mean – SD, N = 3. (C) Measurement of the level of glycol-
ysis capacity (*p < 0.05, **p < 0.01, Student’s t-test).
Mean – SD, N = 3. DMSO, dimethyl sulfoxide; ECAR, ex-
tracellular acidification rate.
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increased synthesis of p53, p21, and p16.49 Furthermore,
MAPKs transcriptionally regulate secretion of senescence-
associated secretory phenotype through nuclear factor-jB
pathways.50 Given that MAPK signaling is highly connected
with senescence, the regulation of MAPK activity might
uncover new tools for therapeutic benefit. In this study, a
beneficial effect on senescence was found using SB203580,
an ATP-competitive pan-p38 MAPK inhibitor.51 However,
we acknowledge that we are unable to identify the specific
p38 MAPK subtype that controls senescence.

Therefore, to further investigate the underlying mecha-
nism of SB203580-mediated senescence amelioration, it
should be warranted to identify p38 MAPK subtypes that
permit effective senescence improvement.

Conclusion

In conclusion, we presented a novel mechanism for how
p38 MAPK inhibition by SB203580 controlled senescence.
In particular, p38 MAPK inhibition had a restorative effect
by recovering the lysosomal and mitochondrial functions,
two critical aspects that were compromised in senescent
cells. All things considered, our findings suggest that ef-
fective modulation of p38 MAPK activity might be a ther-
apeutic strategy for senescence.
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