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Abstract

Promoter trapping is a powerful tool for discovering promoters and uses promoter trapping vectors. However, the traditional
trapping vector allows expression even if it does not integrate into the host cell genome, and even if it does integrate into the
genome, it is more likely to integrate in a region other than the promoter region. In this study, to overcome the shortcomings
of traditional trapping vectors, we used the bicistronic 2A system to link GFP and the neomycin resistance gene. Because
this vector does not contain a promoter, simultaneous production of GFP and neomycin resistance protein requires integra-
tion into the promoter region. In fact, GFP expression was observed in more than 90% of the cell clones that survived in the
medium containing antibiotics, confirming that the 2A system operates. The vector insertion location was confirmed through
whole genome sequence analysis, and a 1-kb promoter candidate region was selected through promoter motif analysis. In
fact, a 1-kb region inserted into a promoterless luciferase expression vector showed strong promoter activity, demonstrating
its utility as a tool to find promoters. In summary, we constructed a novel promoter trapping vector using the 2A system and
used it to discover the promoter with strong activity. This vector will increase the efficiency of promoter trapping, providing
an opportunity to easily discover new promoters in mammalian cells.
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1 Introduction

Improving the protein productivity in mammalian cells has
been a major research goal in the biopharmaceutical field,
and approaches have been attempted from three aspects:
process, cell line, and expression vector [1]. However, there
are limits to controlling protein productivity simply by
improving the process such as pH, media, dissolved oxygen
concentration, and stirring speed [2—4]. Moreover, improve-
ment of cell lines through gene editing is progressing slowly
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because it is not well known which genes play an important
role in protein productivity [5, 6]. However, improvements
in expression vectors have been more effective in increas-
ing protein productivity than other methods by increasing
transcription efficiency [7, 8]. Therefore, there is increasing
research interest in improving expression vectors.

The expression vector consists of a coding sequence
(CDS), a promoter driving CDS expression, and a transcrip-
tion terminator for the CDS [7]. In expression vectors, gene
expression is controlled by promoters, and protein produc-
tion efficiency is closely related to the strength of promoter
activity [9, 10]. Therefore, the discovery and characteriza-
tion of promoters with higher activity is important for pro-
tein production [11]. Commonly used promoters for protein
production are the simian virus 40 (SV40) or cytomegalo-
virus (CMV) promoters [12]. These virus-derived promot-
ers enable the expression of large amounts of recombinant
proteins, but tend to be epigenetically silenced, ultimately
reducing protein productivity [13, 14]. These shortcom-
ings have been largely compensated for by using promoters
found in Chinese hamster ovary (CHO) cells. One successful
example is the promoter of the Chinese hamster elongation
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factor-1oe (CHEF1) gene. The CHEF1 promoter was not epi-
genetically silenced and was able to produce higher amounts
of protein than the CMV promoter [15]. If an endogenous
promoter of CHO cells, such as the CHEF1 promoter, is dis-
covered in the future, this promoter could be another alterna-
tive to ensure high productivity of the protein.

Promoter trapping is a tool used to discover and charac-
terize new promoters [16, 17]. Although it is an important
genetic tool, the probability of successful trapping is not high
due to the disadvantages of traditional trapping vectors [16,
18]. For example, traditional vectors contain a marker gene
without a promoter (e.g., GFP) and a resistance gene with
a promoter (e.g., neomycin resistance gene) [19]. A marker
gene is expressed when inserted into the promoter region
and serves to identify the promoter. A resistance gene allows
cells to survive in media containing antibiotics. However,
a resistance gene with its own promoter can be expressed
even when the vector is not integrated into the host genome.
Therefore, among cell clones that have undergone antibiotic
selection, most clones do not have the vector integrated into
the genome [20]. Moreover, the integration of a vector into
the host genome does not mean that it is integrated into the
promoter region. Therefore, the subsequent process of find-
ing clones that incorporated this into the promoter region
was time-consuming and labor-intensive. If a trapping vector
that can overcome these existing shortcomings is created,
efficient promoter trapping might be possible.

2A peptide consists of a sequence of approximately 20
amino acids and serves to link two proteins [21]. Ribosome
skipping occurs at the Gly and Pro sequences of the 2A pep-
tide, resulting in releases of two independent peptide molecules
from translation of a single mRNA [22]. Therefore, two pro-
teins are produced equally from two linked genes. The useful-
ness of polycistronic protein production using 2A peptides was
further supported by the finding that up to nine genes linked by
2A peptides were co-translated at the same level [23].

In this study, a new trapping vector using 2A peptide was
developed to compensate for the shortcomings of existing
trapping vectors. These vectors were integrated into the
promoter region of the host genome, allowing simultaneous
expression of a marker and resistance gene linked to the 2A
peptide, greatly simplifying the subsequent identification
process. Here, we utilized the developed trapping vector to
discover a novel promoter region in CHO cells.

2 Materials and methods
2.1 Cell culture
This study used CHO DG44 cells (A1100001; Thermo

Fisher Scientific). The previous method of cultivating cells
was employed [24].

2.2 Plasmid design and construction

All plasmids were constructed using standard cloning tech-
niques. The promoter trapping vector consists of a marker
gene (GFP) and a resistance gene (neomycin resistance
gene) linked by P2A, a 2A peptide. To generate a back-
bone vector (BV), the pcDNA3.1 vector (V79020; Invit-
rogen) was modified to contain only promoterless lucif-
erase gene. To ensure that there was promoter activity in
the region where the trapping vector was inserted, a 3-kb
region (275,654,178-275,657,178 of NC_048596.1 (chr3))
of the insertion region was cloned into BV in forward or
reverse orientation. To confirm the promoter analysis, a
1-kb region (275,654,178-275,655,178 of NC_048596.1
(chr3)) was cloned into BV.

2.3 Western blot analysis

Western blot analysis was followed as previously described
[25]. Antibodies used in this study included HRP—con-
jugated GFP antibody (sc-9996 HRP; Santa Cruz Bio-
technology, 1:500 dilution in PBS) and HRP-conjugated
f—actin (sc-47778; Santa Cruz Biotechnology, 1:1000
dilution in PBS).

2.4 Transfection of the promoter trapping vector

2 ng of promoter trapping vector was transfected into
2% 10° CHO DG44 cells using Lipofectamine™ 2000
transfection reagent (11668-019; Thermo Fisher Sci-
entific). Using 250 pg/mL G418 disulfate salt solution
(G418) (ant-gn-1; Thermo Fisher Scientific) for 2 weeks,
transfected cells were chosen.

2.5 Flow cytometric analysis

Using flow cytometry, a FITC setup (530/30 nm bandpass
filter with excitation at 488 nm) was used to calculate the
proportion of cells expressing GFP. The Cell Quest 3.2
application (Becton Dickinson) was utilized to analyze the
results.

2.6 Selection of single cells
Following the selection of antibiotics, 96-well plates

(353,072; Falcon) were used to seed single cells into each
well. Cells were grown for 21 days. Using a fluorescent
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microscope (Axiovert 200; Carl Zeiss), single cells
expressing GFP were chosen.

2.7 Preparation of genomic DNA

Genomic DNA was isolated from single cells express-
ing GFP using a genomic DNA prep kit (SGD41-C100;
Solgent).

2.8 Library preparation and whole genome
sequencing

Whole genome sequencing and library preparation were per-
formed at Theragen Bio Itex. TruSeq Nano DNA Library
Prep Kit (FC-121-4001; Illumina) was used for library prep-
aration. A 350-bp insert size was generated through DNA
size selection combined with adapters during library con-
struction [26]. Paired-end reads of 2 X 150 bases were used
for the run. Sequencing was then performed using the Illu-
mina Novaseq 6000 platform. Cluster generation was per-
formed on a flow cell using libraries built on cBot hardware
(Illumina). After sequencing raw reads, adapter sequences
were trimmed using cutadapt v1.10 [27]. Reads selected for
assembly scored higher than Q30. A new assembly of high-
quality reads was then completed using IDBA-UD [28].

2.9 Measurement of luciferase activity

A kit (E1500; Promega) was used to measure the luciferase
activity. Every process was carried out using the guidelines
provided in earlier research investigations [29].

2.10 Promoter motif analysis

Promoter motif analysis was conducted using FPROM soft-
ware (Softberry, Inc.). Threshold for TATA-box less promot-
ers was 0.80.

2.11 Statistical analyses

A statistical software program (SigmaPlot 12.5; Systat Soft-
ware) was used to conduct the statistical analyses. A Stu-

dent’s #-test was employed to ascertain the significance of
the difference.

3 Results

3.1 Polycistronic expression using 2A peptide
is applicable to CHO cells

To determine whether the two genes linked by the 2A pep-
tide were expressed in CHO cells, a marker gene (GFP) and
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aresistance gene (neomycin resistance gene) were linked by
the 2A peptide (Fig. 1A; a.k.a., GFP-2A-neomycin resist-
ance gene). Before using the GFP-2A-neomycin resistance
gene in a trapping vector, we wanted to determine whether
it could be expressed in CHO cells. The CMV promoter was
placed in front of the GFP-2A-neomycin resistance gene,
allowing the expression of GFP protein and neomycin resist-
ance protein (Fig. 1A). A schematic representation of inde-
pendent protein production from the 2A peptide-containing
transgene is shown in Fig. 1A. Vector including CMV-GFP-
2A-neomycin resistance gene was transfected into 2 x 10°
cells. Transfected cells were selected using a medium con-
taining 250 pg/mL G418 for 2 weeks. Then, the expression
of GFP linked to the 2A peptide was examined using a fluo-
rescence microscope. While no GFP was observed in cells
transfected with the control vector, more than 90% of cells
transfected with the vector expressed GFP (Fig. 1B). These
data indicate that GFP and neomycin resistance genes were
co-expressed. Western blotting also identified a single pro-
tein band corresponding to the molecular mass of the GFP
protein in cells transfected with the vector (Fig. 1C). These
results indicate that ribosomal skipping occurred on the 2A
peptide and two proteins (GFP and neomycin resistance pro-
tein) were produced.

3.2 Promoter trapping using promoterless
GFP-2A-neomycin resistance gene

Confirmation that the 2A system works in CHO cells led us
to investigate whether this new vector could be applied for
promoter trapping in CHO cells. Because this vector lacks
a promoter, it must enter the endogenous promoter region
of the CHO genome for expression (Fig. 2A). A schematic
representation of independent protein production after inte-
gration into the endogenous promoter region of CHO cells
is shown in Fig. 2A. The promoter trapping vector includ-
ing promoterless GFP-2A-neomycin resistance gene was
transfected into 2 x 10° cells. After transfection, a selec-
tion process was performed in medium containing 250 pg/
mL G418 for 2 weeks. To assess the proportion of cells
expressing GFP after antibiotic selection, flow cytometry
was performed. GFP expression was detected in 84.12% of
surviving cells, whereas GFP was detected in 0.09% of cells
transfected with control vector (Fig. 2B).

To select cells expressing only GFP, single cell isola-
tion was performed and 12 single clones expressing GFP
were generated. Promoter trapping vectors contain a GFP
gene that can be expressed when inserted into the pro-
moter region. Since strong GFP expression indicates that
the trapping vector was integrated into the promoter region
with strong promoter activity, the single clone show-
ing the strongest GFP expression among 12 single clones
was selected using a fluorescence microscope. Then, the
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Fig. 1 Polycistronic expression using 2A peptide is applicable to
CHO cells. A CMV promoter was placed in front of the GFP-2A-ne-
omycin resistance gene. Schematic representation of independent
protein production from a 2A-containing transgene is shown. B Com-
parison of differential interference contrast (DIC) and fluorescent
micrographs of cells transfected with control vector or vector contain-
ing CMV-GFP-2A-neomycin resistance gene. No GFP was observed

proportion of cells expressing GFP in the selected single
clone was assessed using flow cytometry. GFP expression
was detected in 98.13% of cells (Fig. 2B). These results
indicate that the vector integrates the promoter region of
CHO cells and that GFP and neomycin resistance genes are
co-expressed.

3.3 Identification of promoter trapping vector
insertion sites in the CHO genome

Whole genome sequencing was performed to determine
which region of the CHO genome trapping vectors were
integrated into. Whole genome sequencing is an important
tool that can analyze millions of DNA fragments simultane-
ously to determine where trapping vectors have integrated
the CHO genome [30]. Among the soft clipped reads, actual
split reads were discovered (Fig. 3, black dotted line). The
soft clipping location indicated by the black dashed line indi-
cates where the vector was inserted (Fig. 3). DNA sequence
information was shown to the right of the black dotted line
(Fig. 3). These DNA sequences were those of the promoter
trapping vector, indicating that the vector was integrated
into the CHO genome (Fig. 3). The exact location where
the vector was inserted was the 275,654,190-275,654,265
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in cells transfected with control vector, whereas more than 90% of
cells expressed GFP in cells transfected with vector containing CMV-
GFP-2A-neomycin resistance gene (Scale bar 50 pm). C Western
blotting identified a single protein band corresponding to the molecu-
lar mass of the GFP protein in cells transfected with vector contain-
ing CMV-GFP-2A-neomycin resistance gene. CHO Chinese hamster
ovary, CMV cytomegalovirus

region of NC_048596.1 (chr3) (Fig. 3). The insertion site
was within the intronic region of the TLC domain contain-
ing the 3B (Tlcd3b) gene (Fig. 3). To determine whether
there was promoter activity in the region where the vec-
tor was inserted, a 3-kb region of the insertion region
(275,654,178-275,657,178 of NC_048596.1 (chr3)) was
selected in forward or reverse orientation (Fig. 3).

3.4 Identification of the promoter region
with promoter activity

To confirm whether the region into which the promoter trap-
ping vector was integrated had promoter activity, the 3-kb
region was inserted into a promoterless luciferase expres-
sion vector in the forward or reverse direction (Fig. 4A).
As a negative control, a blank vector (BV) containing a
luciferase gene without a promoter was used (Fig. 4A). The
3-kb reverse region showed no promoter activity, whereas
the 3-kb forward region showed a slight increase in promoter
activity compared to BV (Fig. 4A). These data indicate that
the core region exhibiting promoter activity exists within the
3-kb forward region. Additionally, these data suggest that
higher promoter activity could be observed if only the core
region was used. Promoter motif analysis using FPROM
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Fig.2 Promoter trapping using A
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software (Softberry, Inc.) was performed to determine which
portion of the 3-kb forward region exhibited promoter activ-
ity. Promoter motif analysis identified that the TATA box was
located at positions 275,654,980-275,654,987 of the 3-kb
forward region (Fig. 4B). The 1-kb region where the TATA
box is located (275,654,178-275,655,178 of NC_048596.1
(chr3)) was cloned into the BV vector (Fig. 4C). A 1-kb
region inserted into a promoterless luciferase expression
vector showed a significant increase in promoter activity
compared to BV (Fig. 4C).

4 Discussion

Promoters are one of the important elements that allow
expression vectors to achieve high and stable protein pro-
duction [31]. Virus-derived promoters are most commonly
used for commercial protein production [32]. However,
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these promoters do not respond to changes in the internal
environment of the host cell, resulting in overexpression of
the transgene. Overexpression caused severe stress to cells,
resulting in side effects such as early cell death [33]. These
promoters also showed diverse activity patterns depending
on the cell type. For example, the virus-derived CMV pro-
moter showed 207% activity in human HeLa cells, whereas
in other mammalian cell types its activity ranged from 21
to 113% [34]. This variability limits the applicability of this
promoter for commercial protein production. To compensate
for these shortcomings, an alternative strategy using endog-
enous promoters derived from each cell has been proposed.
Promoter trapping methods have been used to find endog-
enous promoters [35, 36]. However, fundamental problems
with the vectors used for promoter trapping significantly
delay the process of finding new promoters. For example,
a promoter trap vector consists of a marker gene without a
promoter and a resistance gene with a promoter [35, 37-39].
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Fig. 3 Identification of pro-
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Resistance genes with promoters can be expressed at any
time, allowing host cells to survive the antibiotic selection
process even if the marker gene is not integrated into the
host genome. Additionally, integration of a promoter trap-
ping vector into the host cell genome does not mean that
it is integrated into the promoter region. In this study, we
developed a promoter trapping vector that can solve the
shortcomings of traditional trapping vectors. This vector
uses the 2A peptide to enable simultaneous expression of
marker and resistance proteins under the influence of one
promoter. Indeed, after antibiotic selection, more than 90%
of surviving cells were found to express GFP, indicating that
the 2A peptide worked well. These findings also indicate that
the vector was integrated into the promoter region of the
host genome. After obtaining a single clone, whole genome
sequencing allowed us to find the region where the vector
was integrated. Based on the insertion site, we were able to
pinpoint the site with actual promoter activity. To the best of
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our knowledge, this study is the first to apply the 2A peptide
to a promoter trapping vector. In a previous study, the 2A
peptide was used to target adeno-associated virus-mediated
genes, but was not used to identify the promoter itself [40].
Therefore, this study applying the 2A peptide to a promoter
trapping vector will complement the shortcomings of tra-
ditional trapping vectors, making it easy to find promoters
through promoter trapping.

The most urgent goal of the biopharmaceutical industry
is to dramatically increase protein productivity. Improve-
ments in protein productivity were mainly achieved through
controlling factors related to process operating conditions
[4]. However, there was a limit to the protein production
that could be increased through process improvement, and
as a result, the high expectations of the biopharmaceutical
industry were not met [41]. Other studies have attempted
to achieve this goal through cell line improvement. In fact,
manipulating anti-apoptotic genes or down-regulation
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of pro-apoptotic proteins increased protein productivity
[42—45]. However, there are limits to improving cell lines
through genetic manipulation because it is difficult to know
which genes need to be regulated in a short period of time.
Recently, studies have reported that protein productivity can
be effectively increased through the control of expression
vector [46—48]. In particular, by manipulating the promoter
constituting the expression vector, transcriptional activ-
ity could be controlled, making it possible to produce a
cell line with higher protein productivity [49, 50]. In this
study, we discovered a novel endogenous promoter in the
CHO genome using a novel trapping vector. However, we
acknowledge that we have not been able to apply this pro-
moter to commercial protein production to examine how
much protein can be produced per unit volume. If further
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research is conducted on protein productivity using this pro-
moter, the utility of this promoter will be further expanded.
Additionally, applying the strategies used to optimize the
virus-derived CMV and SV40 promoters to this promoter
will likely lead to optimized promoters with consistently
high levels of protein productivity.

5 Conclusion

We used a bicistronic 2A system to overcome the short-
comings of conventional trapping vectors. This new system
allowed us to effectively discover the new promoter with
higher activity in CHO cells. This new trapping vector
makes it easy to find endogenous promoters in a variety of
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cells, which could be a groundbreaking tool for increasing
protein productivity in biopharmaceutics.
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