RESEARCH PAPER

ROSA26 BAC-based system enables continuous high-yield protein production

Myeong Uk Kuk¹ · Moon Kyoung So¹ · Ji Ho Park¹ · Jee Hee Yoon¹ · Yoo Jin Lee¹ · Duyeol Kim¹ · Byeonghyeon So¹ · Yun Haeng Lee¹ · Minseon Kim¹ · Youngjoo Byun³ · Hyung Wook Kwon^{1,2} · Joon Tae Park^{1,2}

Received: 31 May 2024 / Revised: 25 September 2024 / Accepted: 8 October 2024 / Published online: 15 November 2024 © The Author(s), under exclusive licence to The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The mouse ROSA26 locus serves as a port to maintain stable expression of the transgene. Therefore, a bacterial artificial chromosome (BAC) containing the ROSA26 locus was used as a platform to produce proteins by incorporating transgenes with foreign promoters. However, the endogenous promoter of the ROSA26 locus, which allows stable high-level transgene expression, has not been applied to the ROSA26 BAC-based platform. In this study, we generated recombinant ROSA26 BAC by targeting "exon 1" or "intron 1" of the ROSA26 locus. Recombinant ROSA26 BAC (exon 1) had lower protein productivity compared to the control. However, recombinant ROSA26 BAC (intron 1) produced protein at a higher efficiency than the control group. The protein productivity induction effect by recombinant ROSA26 BAC (intron 1) was maintained up to a single clone, enabling stable protein production over a long period of time. Taken together, we established a ROSA26 BAC-based protein production system capable of producing protein at high yield over a long period of time.

Keywords ROSA26 BAC · Endogenous promoter · Intron 1

1 Introduction

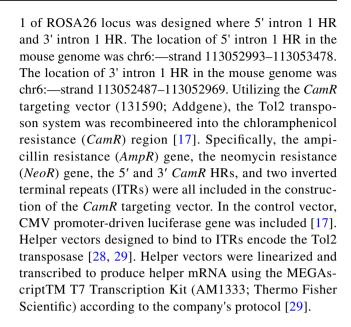
One of the platforms used for protein production is based on plasmids [1]. Plasmid-based vectors continue to exist as extrachromosomally replicating episomes after transfection, enabling highest levels of gene expression between 24 and 96 h [1]. However, due to limited episomal stability, the expression level of the transgene gradually decreases [2–4]. To avoid these drawbacks, a process of selecting clones with desirable characteristics should be performed, which is both labor-intensive and time-intensive [5]. However, even after the establishment of a stably transfected clone, the chromatin

- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
- College of Pharmacy, Korea University, Sejong 30019, Korea

surrounding the transgenic integration site, have a significant impact on the expression of the transgene (i.e., positional chromatin effects) [6]. Based on these findings, there were doubts about the use of the widely used plasmid-based vector systems for protein production [7, 8]. A new vector platform called bacterial artificial chromosome (BAC) has been used as a way to address positional chromatin effects. A genomic region of 150–350 kb can be found in BAC, which contains all cis-acting regulatory elements (insulators, enhancers, promoters, etc.) [9]. Therefore, BAC is considered a safe expression unit that allows stable transgene expression without disturbing the nearby chromatin where integration occurs [10].

Through gene trapping, the ROSA26 locus was discovered on mouse chromosome 6 [11]. The ROSA26 locus maintained long-term gene expression and exhibited resistance to gene silencing, allowing the transgene to be expressed constitutively in vivo. To date, more than 560 knock-in lines at the ROSA26 locus have been generated in mouse [12]. ROSA26 BAC containing the ROSA26 locus also has been alternatively used to generate animal models [13–15]. The transgene inserted into the ROSA26 locus in the ROSA26 BAC accurately mimicked the original

expression pattern of ROSA26 locus and had little interference with the chromatin region surrounding the insertion site [14]. The proven utility of ROSA26 BAC has also been applied to produce recombinant proteins in mammalian cells [16–18]. The result that the ROSA26 BAC-based protein production platform improved protein production by 10 times compared to existing vector systems supports its importance as a protein production platform [18]. However, the ROSA26 BAC-based platform used a cytomegalovirus (CMV) immediate enhancer/β-actin (CAG) promoter instead of the endogenous promoter of the ROSA26 locus [18]. Exogenous promoters such as CMV and CAG do not have the characteristics of the endogenous promoter of the ROSA26 locus, which has the ability to maintain long-term gene expression [19]. Since maintaining gene expression for a long period of time is considered the most important factor in protein production [2, 20, 21], building a platform using the endogenous promoter of the ROSA26 locus has become the most urgent value in the biopharmaceutical industry.


ROSA26 locus consists of three exons (exon 1, 2 and 3) and two introns (intron 1 and 2) [11]. Among them, exon 1 contains the start codon of the ROSA26 gene. The region containing the start codon is commonly targeted to generate knock-in animals, because transgenes inserted in this region can be influenced by the endogenous promoter [22–24]. Intron 1 of the ROSA26 gene is the site where the promoterless β -galactosidase/neomycin resistance fusion gene (β geo) was originally inserted in trapping experiments, allowing stable and ubiquitous expression of the inserted transgene [25–27].

In this study, we established two versions of recombinant ROSA26 BAC targeting exon 1 or intron 1 to evaluate the performance of the endogenous promoter of the ROSA26 locus. Among them, we found that the recombinant ROSA26 BAC targeting intron 1 enabled consistently high yields of protein production. Here, we propose an improved recombinant protein production platform using the endogenous promoter of the ROSA26 locus in mammalian cells.

2 Material and methods

2.1 Construction of targeting vector, control vector and helper vector

A recombinant plasmid was established by conventional cloning methods. A targeting vector against exon 1 of ROSA26 locus was designed where 5' exon 1 homology region (HR) and 3' exon 1 HR. The location of 5' exon 1 HR in the mouse genome was chr6:—strand 113054085–113054184. The location of 3' exon 1 HR in the mouse genome was chr6:—strand 113053585–113054084. A targeting vector against intron

2.2 BAC recombineering

ROSA26 BAC clone (RP24-85L15, BACPAC Resource Center) was used for BAC recombineering. When performing BAC recombineering, the λ red recombination approach was used [30]. Specifically, the λ red recombination method specifically regulates the expression of the lambda-red recombinase via a temperature-sensitive lambda repressor [31, 32]. The lambda-red recombinase system was added to a genetically engineered SW105 bacterial strain. This strain contains the PL operon encoding the lambda-red recombinase exo, bet, and gam, which are essential for the recombination process. The temperaturesensitive lambda repressor tightly regulates the PL operon (cI857). cI857 is activated at low temperatures (30–34 °C) and binds to the operator site, silencing recombinant gene transcription. A thermal shift to 42 °C reversibly inhibits cI857 activity, thereby activating the transcription of recombinant gene. Recombination then occurs.

2.3 Cell culture

CHO DG44 cells (A1100001; Thermo Fisher Scientific) were cultured as described in previous studies [29]. Specifically, CHO DG44 cells were maintained in Dulbecco's modified Eagle's medium containing 25 mM glucose, 10% fetal bovine serum (SH30919.03; Hyclone), 10 mM sodium hypoxanthine, 1.6 mM thymidine (2,068,642; Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin (SV30079.01; Hyclone). Cells were cultured at ambient air (20% O₂) with 5% CO₂. Using a Cedex HiRes Analyzer

(05650216001; Roche), cell density and viability were measured.

2.4 Transfections and cell line development

Control vector and recombinant ROSA26 BAC were transfected into cells at a DNA copy ratio of 1:1. Specifically, 5×10^5 cells were transfected with 0.3 µg control vector (size: 7,123 bps) or 6 µg recombinant ROSA26 BAC (size: 222,649 bps). 0.667 µg helper mRNA was transfected together with 6 µg recombinant ROSA26 BAC. Then, the cell line development process proceeded as previously described [29].

2.5 Measurement of luciferase activity

Luciferase activity was analyzed as described previously [17]. Briefly, luciferase activity was assessed using a luciferase assay kit (E1500; Promega). Cell counts were determined using a Cedex HiRes Analyzer. Cells (2×10^6) were centrifuged at $200\times g$ for 2 min and washed twice with phosphate-buffered saline (PBS). Cells were shaken in $100~\mu\text{L}$ of PBS and $100~\mu\text{L}$ of $1\times\text{cell}$ culture lysis reagent. White 96-well plates (30,396; SPL Life Sciences) were used, and the lysed samples ($100~\mu\text{L}$) were added to each well. Then, $100~\mu\text{L}$ of luciferase assay reagent II was added to each well. Luciferase activity was measured on a VICTOR multilabel plate reader (2030-0050; PerkinElmer).

2.6 Quantitative polymerase chain reaction (qPCR)

qPCR using mRNA or genomic DNA was conducted as described previously [17]. More specifically, the following primers were used in qPCR: 5'-GCACCACCAACT GCTTAGC-3' (*GAPDH*-forward), 5'-AGTCTTCTGGGT GGCAGTGA-3' (*GAPDH*-reverse), 5'-AGGAGATACGCC CTGG-3' (*luciferase*-forward), and 5'-AATAACGCGCCC AACA-3' (*luciferase*-reverse).

2.7 Western blot analysis

Western blotting was done in accordance with earlier instructions [33]. HRP-conjugated anti-luciferase antibody (sc74548; 1:1,000 dilution; Santa Cruz Biotechnology) and HRP-conjugated anti-β-actin antibody (sc47778; 1:1,000 dilution; Santa Cruz Biotechnology) were utilized.

2.8 Determination of relative cell-specific productivity (Qp)

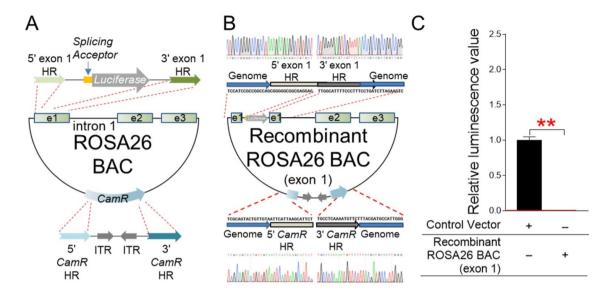
Relative Qp (pg/cell/day) in media was determined by calculating the relative activity of secreted luciferase protein in the medium. To quantify the amount of luciferase

activity in the medium, 100 μ L of medium samples were placed into each well of a white 96-well plate (30,396; SPL Life Sciences). After adding 100 μ L of Luciferase Assay Reagent II to each well, luciferase activity was assessed using a VICTOR multilabel plate reader (2030-0050; PerkinElmer). Cell viability and density were measured using a Cedex HiRes Analyzer (05650216001; Roche). Qp was calculated according to the method proposed in a previous study [34].

2.9 Statistical analyses

Statistical analysis used Student's *t*-test or two-way ANOVA followed by Bonferroni's post hoc test.

3 Results


3.1 Establishment of recombinant ROSA26 BAC (exon 1)

To evaluate the performance of the endogenous promoter of the ROSA26 locus, a region within ROSA26 exon 1 containing the start codon of ROSA26 gene (chr6:—strand 113052487-113053478) was selected for targeting of the transgene (Fig. 1a). BAC targeting vector contained 5' exon 1 HR and 3' exon 1 HR (Fig. 1a). To assess the activity of the promoter, the luciferase gene was inserted between the 5' exon 1 HR and 3' exon 1 HR (Fig. 1a). The luciferase gene was placed followed by the splice acceptor sequence (SA) as found in the original gene trapping vector (Fig. 1a) [35]. To facilitate genomic integration of the ROSA26 BAC, the Tol2 transposon system was introduced into the CamR region (Fig. 1a). For incorporation of the Tol2 transposon system into the CamR region, a CamR targeting vector containing "5' CamR HR & 3' CamR HR" and a pair of ITR was used (Fig. 1a). After the BAC recombineering process, the recombination region was confirmed through DNA sequence analysis. Sequence analysis of the recombinant ROSA26 BAC (exon 1) demonstrated the presence of the recombinant sequence, providing evidence that homologous recombination was successfully achieved (Fig. 1b).

As a comparison group for the experiment, a control vector carrying a CMV promoter-driven luciferase gene was used [17]. Recombinant ROSA26 BAC (exon 1) or control vector were transiently transfected into cells. The luciferase activity in recombinant ROSA26 BAC (exon 1) was significantly lower than that in the control vector (Fig. 1c). These results indicate that the exon 1 region used to generate knock-in mice was not suitable for protein production in

1028 M. U. Kuk et al.

Fig. 1 Establishment of recombinant ROSA26 BAC (exon 1). **a** A schematic representation of a BAC targeting vector and a *CamR* targeting vector. BAC targeting vector contained 5' exon 1 HR and 3' exon 1 HR. To assess the activity of the promoter, the luciferase gene was inserted between the 5' exon 1 HR and 3' exon 1 HR. The luciferase gene was placed followed by the splice acceptor sequence (SA) as found in the original gene trapping vector. *CamR* targeting vec-

tor contained "5' CamR HR & 3' CamR HR" and a pair of inverted terminal repeats (ITR). **b** Sequence analysis of the recombinant ROSA26 BAC (exon 1) demonstrated the presence of the recombinant sequence. **c** The luciferase activity in recombinant ROSA26 BAC (exon 1) was significantly lower than that in the control vector. **p<0.01, Student's t-test. Mean \pm SD, N=3. BAC: bacterial artificial chromosome, HR: homology region

mammalian cells. These results also mean that in order to create a protein production platform using ROSA26 BAC, a region other than exon 1 should be targeted.

3.2 Establishment of recombinant ROSA26 BAC (intron 1)

The intron 1 region in ROSA26 locus was also used frequently to generate knock-in mice [25-27]. Therefore, a region within ROSA26 intron 1 (chr6:-strand 113052487–113053478) was selected for targeting of the transgene (Fig. 2a). Specifically, BAC targeting vector contained 5' intron 1 HR and 3' intron 1 HR (Fig. 2a). To assess the activity of the promoter, the luciferase gene was inserted between the 5' intron 1 HR and the 3' intron 1 HR (Fig. 2a). SA was inserted in front of the luciferase gene (Fig. 2a). To facilitate genomic integration of the ROSA26 BAC, the Tol2 transposon system was introduced into the CamR region (Fig. 2a). After the BAC recombineering process, the recombination region was confirmed through DNA sequence analysis. Sequence analysis of the recombinant ROSA26 BAC (intron 1) demonstrated the presence of the recombinant sequence, providing evidence that homologous recombination was successfully achieved (Fig. 2b).

Recombinant ROSA26 BAC (intron 1) or control vector were transiently transfected into cells. The luciferase activity in recombinant ROSA26 BAC (intron 1)

was significantly higher than that of the control vector (Fig. 2c). These results indicate that the intron 1 region was suitable as a targeting region for protein production in mammalian cells.

3.3 Underlying mechanism for increased protein production by recombinant ROSA26 BAC (intron 1)

We then investigated how recombinant ROSA26 BAC (intron 1) led to high-yield protein production. Because increased integration of the transgene into the genome is a prerequisite for high yield protein production [17, 29, 36], the integrated copy number of recombinant ROSA26 BAC (intron 1) into the genome was compared with that of the control vector. Compared with the control vector, the recombinant ROSA26 BAC (intron 1) significantly increased transformant integration by 1.57-fold (Fig. 3a). Next, we assessed whether increased transgene integration into the genome led to increased transgene expression. Indeed, compared with the control vector, recombinant ROSA26 BAC (intron 1) significantly increased transgene expression by 9.33-fold (Fig. 3b). Finally, Western blotting was performed to assess whether increased transgene expression led to increased protein production. Compared to the control vector, recombinant ROSA26 BAC (intron 1) markedly increased luciferase protein production by 5.7-fold (Fig. 3c).

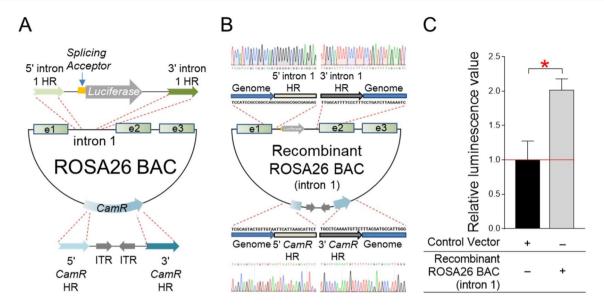


Fig. 2 Establishment of recombinant ROSA26 BAC (intron 1). a A schematic representation of a BAC targeting vector and a *CamR* targeting vector. BAC targeting vector contained 5' intron 1 HR and 3' intron 1 HR. *CamR* targeting vector contained "5' *CamR* HR & 3' *CamR* HR" and a pair of inverted terminal repeats (ITR). *CamR* targeting vector contained "5' *CamR* HR & 3' *CamR* HR" and a pair of

ITR. **b** Sequence analysis of the recombinant ROSA26 BAC (intron 1) demonstrated the presence of the recombinant sequence. **c** The luciferase activity in recombinant ROSA26 BAC (intron 1) was significantly higher than that of the control vector. *p < 0.05, Student's t-test. Mean \pm SD, N=3. BAC: bacterial artificial chromosome, HR: homology region

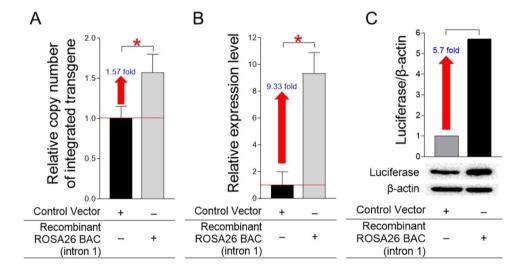
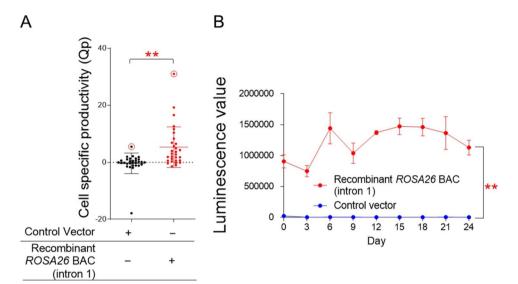


Fig. 3 Underlying mechanism for increased protein production by recombinant ROSA26 BAC (intron 1). **a** The relative copy number of integrated transgene in cells transfected with control vector or recombinant ROSA26 BAC (intron 1). *p<0.05, Student's t-test. Mean \pm SD, N=3. **b** The relative transgene expression in cells trans-

fected with control vector or recombinant ROSA26 BAC (intron 1). *p<0.05, Student's t-test. Mean \pm SD, N=3. c Western blot analysis to evaluate protein production in cells transfected with control vector or recombinant ROSA26 BAC (intron 1). BAC: bacterial artificial chromosome


3.4 Maintaining productivity-enhancing effect of recombinant ROSA26 BAC (intron 1) in single clones

Generating a single clone from a pool is an essential process to meet regulatory standards, as it ensures monoclonality and produces proteins consistently [37]. Therefore, a single cell isolation procedure was performed. For each group, thirty single clones were established (Fig. 4a). To evaluate the performance of each single clone, we used Qp, which quantifies the rate of protein production per cell and unit of time (pg/cell/day) [38]. Qp is one of the most important

1030 M. U. Kuk et al.

Fig. 4 Suitability of recombinant ROSA26 BAC (intron 1) for long-term protein production. a Maintaining productivity-enhancing effect of recombinant ROSA26 BAC (intron 1) in single clones. Each dot represents the cell-specific productivity (Qp) of single clones. The horizontal bar indicates the average of Op for each condition. **p < 0.01, Student's t-test. Mean \pm SD, N = 30. **b** To perform batch culture-based stability tests, luciferase activity was measured for 24 days. **p < 0.01, two-way ANOVA followed by Bonferroni's post test. Mean \pm SD, N = 3. BAC: bacterial artificial chromosome

parameters used when comparing the performance of protein production platforms [39, 40]. Single clones generated with the recombinant ROSA26 BAC (intron 1) showed significantly higher Qp compared to clones generated with control vector (Fig. 4a). These findings demonstrate that the productivity-enhancing effects of the recombinant ROSA26 BAC (intron 1) persisted in single clones. The maintenance of increased productivity even in single clones suggests that the recombinant ROSA26 BAC (intron 1) could be a next-generation platform in protein production.

3.5 Suitability of recombinant ROSA26 BAC (intron 1) for long-term protein production

The urgent research goal in the field of biopharmaceutics is to develop a system capable of continuous and efficient protein production [2, 20, 21]. Therefore, we investigated whether recombinant ROSA26 BAC (intron 1) could maintain high levels of protein production for long periods of time. The suitability of recombinant ROSA26 BAC (intron 1) was assessed in batch culture experiments for 24 days. During 24 days of culture, recombinant ROSA26 BAC (intron 1) showed significantly higher luminescence compared to the control vector (Fig. 4b). These findings suggest that recombinant ROSA26 BAC (intron 1) is a suitable platform for biopharmaceutical production that requires long culture periods.

4 Discussion

Increasing protein production in mammalian cells is one of the most interesting research goals in the biopharmaceutical industry [41, 42]. Various strategies have been tried to enhance protein productivity, including modification of media components, host cell engineering, and vector engineering [43, 44]. Among them, the most efficient way to increase protein productivity is to modify vectors and apply them to protein production [20, 45–47]. ROSA26 BAC containing the ROSA26 locus has recently attracted attention as a platform for producing recombinant proteins in mammalian cells [16–18]. For example, recombinant ROSA26 BAC was constructed for production of human IgG1 constant region [18]. The control vector produced 0.5 pg/cell/ day of human IgG1 constant region in the supernatant, whereas the recombinant ROSA26 BAC produced 5.7 pg/ cell/day [18]. Another recombinant ROSA26 BAC was constructed for the scFc antibody (fusion of the single-chain fragment variable [GenBank: CAA01551] to the human IgG1 Fc region [GenBank: CAA49866]) [10]. The control vector produced 0.6-9.5 pg/cell/day of scFc antibody in the supernatant, whereas the recombinant ROSA26 BAC produced 10–30 pg/cell/day [10]. However, the ROSA26 BAC-based expression method uses exogenous promoters such as CMV and CAG, instead of the endogenous promoter of the ROSA26 locus [10, 16–18]. The endogenous promoter of the ROSA26 locus is worthy of application in protein production platforms because it enables sustained, high-efficiency gene expression. In this study, we established two ROSA26 BAC-based protein production platforms using the endogenous promoter of the ROSA26 locus. First, we targeted exon 1 (chr6:—strand 113,052,487–113053478) containing the start codon of the ROSA26 gene, because targeting the start codon region is a commonly used strategy to generate knock-in animals [22-24]. Therefore, the recombinant ROSA26 BAC (exon 1) inserted the start codon of the luciferase gene into the original start codon position of the ROSA26 gene, so that the expression of the luciferase gene was influenced by the endogenous ROSA26 promoter. However, the recombinant ROSA26 BAC (exon 1) did not

induce the production of luciferase protein. This may be due to the nature of the ROSA26 region encoding noncoding RNA that is transcribed but not translated [35]. Second, we targeted intron 1 of the ROSA26 locus (chr6:-strand 113,052,487–113053478) because insertion of a promoterless βgeo into intron 1 resulted in constitutive expression of βgeo under the influence of the endogenous ROSA26 promoter [35]. Thus, intron 1 in ROSA26 locus is the target region used to generate knock-in animals in mice and other species [25–27]. The recombinant ROSA26 BAC (intron 1), targeting intron 1 of the ROSA26 locus, induced 5.7-fold higher protein production compared to the control vector. Furthermore, the productivity improvement effect achieved by recombinant ROSA26 BAC (intron 1) was maintained up to single clones. This study is the first to use the intron 1 region of the ROSA26 locus as an endogenous promoter to increase protein production in mammalian cells. Here we propose to use the recombinant ROSA26 BAC (intron 1) as a next-generation protein production platform. This platform will serve as a driving force to increase the price competitiveness of biopharmaceuticals in response to the needs of the biopharmaceutical industry that requires high productivity.

Maintaining consistent protein production over long periods of time is one of the most challenging goals in biopharmaceutical production when the use of antibiotic selection is not applicable [2, 20, 21]. Various attempts have been made to achieve a sustainable production, but they have not been effective. For example, the plasmid vector-based protein production platform failed to achieve a consistently high level of protein production because the expression of gene significantly decreased with each generation [48–50]. To address these potential shortcomings, the use of sitespecific integration (SSI) for cell line development has been proposed [51]. Integration of the transgene into a genomic hotspot that allows consistent expression via SSI allowed the generation of stable isogenic clones that maintain consistent protein production over long periods of time [51–54]. However, SSI can only integrate at most two copies of the transgene into the host genome, resulting in low protein productivity [51, 55]. In this study, we found that protein productivity improvement by the recombinant ROSA26 BAC (intron 1) was observed up to single clones. Extending the relevance of these findings, recombinant ROSA26 BAC (intron 1) continued to maintain higher luciferase activity than the control vector even over 24 days. Ultimately, our findings indicate that recombinant ROSA26 BAC (intron 1) is the most suitable platform for biopharmaceutical production that requires prolonged culture periods where antibiotic selection is not applied.

In summary, we created a recombinant ROSA26 BAC (intron 1)-based protein production platform utilizing the endogenous promoter of the ROSA26 locus. This platform

increased the expression of the transgene and ultimately increased protein production. Additionally, the effect of this platform on increasing protein production remained constant over long culture times. Therefore, our results suggest that this new platform can ultimately be applied to large-scale biopharmaceutical production by solving unresolved problems in the biopharmaceutical industry.

Acknowledgements This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HP23C0024).

Author's contributions MUK Writing—original draft, Writing—Review and Editing, Investigation. MKS Investigation. JHP Investigation. JHY Investigation. DK Investigation. BS Investigation. YHL Investigation. MK Investigation. YB Writing—Review. HWK Writing—Review. JTP Writing—original draft, Writing—Review and Editing.

Data availability The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval Neither ethical approval nor informed consent was required for this study.

References

- Canto T (2016) Transient expression systems in plants: potentialities and constraints. Adv Exp Med Biol 896:287–301. https://doi.org/10.1007/978-3-319-27216-0 18
- Mi J, Liu S, Qi H et al (2021) Cellular engineering and biocatalysis strategies toward sustainable cadaverine production: state of the art and perspectives. ACS Sustain Chem Eng 9:1061–1072. https://doi.org/10.1021/acssuschemeng.0c07414
- Uckelmann M, Davidovich C (2022) An added layer of repression for human genes. Nature 604:41–42. https://doi.org/10.1038/d41586-022-00519-3
- Tchasovnikarova IA, Timms RT, Matheson NJ et al (2015) GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells. Science 348:1481– 1485. https://doi.org/10.1126/science.aaa7227
- Zitzmann J, Schreiber C, Eichmann J et al (2018) Single-cell cloning enables the selection of more productive *Drosophila melanogaster* S2 cells for recombinant protein expression. Biotechnol Rep (Amst) 19:e00272. https://doi.org/10.1016/j.btre.2018.e00272
- Giraldo P, Montoliu L (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res 10:83–103. https://doi.org/10.1023/a:1008918913249
- Wilber A, Frandsen JL, Geurts JL et al (2006) RNA as a source of transposase for sleeping beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 13:625–630. https://doi.org/10.1016/j.ymthe.2005.10.014
- 8. Bire S, Ley D, Casteret S et al (2013) Optimization of the piggyBac transposon using mRNA and insulators: toward a more

- reliable gene delivery system. PLoS ONE 8:e82559. https://doi.org/10.1371/journal.pone.0082559
- Stone NE, Fan JB, Willour V et al (1996) Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene. Genome Res 6:218–225. https://doi.org/10.1101/ gr.6.3.218
- Mader A, Prewein B, Zboray K et al (2013) Exploration of BAC versus plasmid expression vectors in recombinant CHO cells. Appl Microbiol Biotechnol 97:4049–4054. https://doi.org/10. 1007/s00253-012-4498-x
- Zambrowicz BP, Imamoto A, Fiering S et al (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc Natl Acad Sci USA 94:3789–3794. https://doi.org/10.1073/pnas.94.8.3789
- Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199. https://doi.org/10.1016/0378-1119(91) 90434-D
- 13. Sparwasser T, Eberl G (2007) BAC to immunology—bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology 121:308–313. https://doi.org/10.1111/j.1365-2567.2007.02605.x
- Giel-Moloney M, Krause DS, Chen G et al (2007) Ubiquitous and uniform in vivo fluorescence in ROSA26-EGFP BAC transgenic mice. Genesis 45:83–89. https://doi.org/10.1002/dvg.20269
- Imayoshi I, Tabuchi S, Matsumoto M et al (2020) Light-induced silencing of neural activity in Rosa26 knock-in and BAC transgenic mice conditionally expressing the microbial halorhodopsin eNpHR3. Sci Rep 10:3191. https://doi.org/10.1038/ s41598-020-59984-3
- Blaas L, Musteanu M, Grabner B et al (2012) The use of bacterial artificial chromosomes for recombinant protein production in mammalian cell lines. Methods Mol Biol 824:581–593. https://doi.org/10.1007/978-1-61779-433-9_31
- Kuk MU, Park JY, Song ES et al (2022) Bacterial artificial chromosome-based protein expression platform using the Tol2 transposon system. Biotechnol Bioprocess Eng 27:344–352. https://doi.org/10.1007/s12257-021-0222-y
- Blaas L, Musteanu M, Eferl R et al (2009) Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnol 9:3. https://doi.org/10.1186/ 1472-6750-9-3
- Chen CM, Krohn J, Bhattacharya S et al (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a ΦiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS ONE 6:e23376. https://doi.org/10.1371/journal.pone.00233 76
- Backliwal G, Hildinger M, Chenuet S et al (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96. https://doi.org/10.1093/nar/gkn423
- Kamaludin NH, Feisal NAS (2023) Biomanufacturing for sustainable production of biomolecules: pseudomonas putida cell factory.
 In: Singh V, Show PL (eds) Biomanufacturing for sustainable production of biomolecules. Springer, Singapore
- Balog M, Anderson A, Gurumurthy CB et al (2022) Knock-in mouse models for studying somatostatin and cholecystokinin expressing cells. J Neurosci Methods 381:109704. https://doi. org/10.1016/j.jneumeth.2022.109704
- Milioto C, Carcolé M, Giblin A et al (2024) PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons. Nat Neurosci 27:643–655. https://doi.org/10.1038/s41593-024-01589-4

- Yoshimi K, Kunihiro Y, Kaneko T et al (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431. https://doi.org/10.1038/ncomms10431
- Hohenstein P, Slight J, Ozdemir DD et al (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. PathoGenetics 1:3. https://doi.org/10.1186/ 1755-8417-1-3
- Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4. https://doi.org/10.1186/ 1471-213x-1-4
- Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71. https://doi.org/10.1038/ 5007
- 28. Izsvák Z, Ivics Z (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9:147–156. https://doi.org/10.1016/j.ymthe.2003.11.009
- Hwang SY, Lee YH, Kuk MU et al (2021) Improvement of Tol2 transposon system enabling efficient protein production in CHO cells. Biotechnol Bioprocess Eng 26:767–775. https://doi.org/10. 1007/s12257-020-0310-4
- 30. Kuk MU, Lee YH, Kim JW et al (2021) Rapid and efficient BAC recombineering: gain & loss screening system. Biotechnol Bioprocess Eng 26:1023–1033. https://doi.org/10.1007/s12257-020-0382-1
- Lee EC, Yu D, Martinez de Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65. https://doi.org/10.1006/geno.2000.6451
- Yu D, Ellis HM, Lee EC et al (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983. https://doi.org/10.1073/pnas.10012 7597
- Hwang SY, Kuk MU, Kim JW et al (2020) ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 55:54–63. https://doi.org/10.1016/j.mito.2020. 09.002
- Clarke C, Doolan P, Barron N et al (2011) Predicting cell-specific productivity from CHO gene expression. J Biotechnol 151:159– 165. https://doi.org/10.1016/j.jbiotec.2010.11.016
- Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523. https://doi.org/10.1101/gad.5. 9.1513
- Lee YH, Park JY, Song ES et al (2022) Improvement of sleeping beauty transposon system enabling efficient and stable protein production. Biotechnol Bioprocess Eng 27:353–360. https://doi. org/10.1007/s12257-021-0231-x
- 37. Tharmalingam T, Barkhordarian H, Tejeda N et al (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol Prog 34:613–623. https://doi.org/10.1002/btpr.2666
- 38. Madabhushi SR, Podtelezhnikov AA, Murgolo N et al (2021) Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells. J Biotechnol 329:92–103. https://doi.org/10.1016/j.jbiotec.2021.01.023
- Gallagher C, Kelly PS (2017) Selection of high-producing clones using FACS for CHO cell line development. Methods Mol Biol 1603:143–152. https://doi.org/10.1007/978-1-4939-6972-2_9
- 40. Kempken R, Berthold W, Thomse K (1995) Significance of specific productivity for the effectiveness and consistency of mammalian cell cultivation. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal cell technology: developments towards the 21st century. Springer, Dordrecht

- Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260. https://doi. org/10.1016/j.febslet.2013.11.035
- Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. https://doi. org/10.1016/j.biotechadv.2011.08.022
- Tihanyi B, Nyitray L (2020) Recent advances in CHO cell line development for recombinant protein production. Drug Discov Today Technol 38:25–34. https://doi.org/10.1016/j.ddtec.2021.02. 003
- Radhakrishnan D, Wells EA, Robinson AS (2018) Strategies to enhance productivity and modify product quality in therapeutic proteins. Curr Opin Chem Eng 22:81–88. https://doi.org/10. 1016/j.coche.2018.09.005
- 45. Tran DTM, Phan TTP, Doan TTN et al (2020) Integrative expression vectors with *Pgrac* promoters for inducer-free overproduction of recombinant proteins in *Bacillus subtilis*. Biotechnol Rep (Amst) 28:e00540. https://doi.org/10.1016/j.btre.2020.e00540
- Mikiewicz D, Plucienniczak A, Bierczynska-Krzysik A et al (2019) Novel expression vectors based on the pIGDM1 plasmid. Mol Biotechnol 61:763–773. https://doi.org/10.1007/ s12033-019-00201-6
- Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible *Tobacco mosaic virus* expression vectors. BMC Biotechnol 7:52. https://doi.org/10.1186/ 1472-6750-7-52
- 48. Chen ZY, He CY, Meuse L et al (2004) Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856–864. https://doi.org/10.1038/sj.gt.3302231
- Chen ZY, Riu E, He CY et al (2008) Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 16:548–556. https:// doi.org/10.1038/sj.mt.6300399

- 50. Oleg ET, Tatiana S, Tanya T (2013) Silencing of transgene expression: a gene therapy perspective. In: Martín-Molina F (ed) Gene therapy-tools and potential applications. IntechOpen, London
- Hamaker NK, Lee KH (2018) Site-specific integration ushers in a new era of precise CHO cell line engineering. Curr Opin Chem Eng 22:152–160. https://doi.org/10.1016/j.coche.2018.09.011
- Ghanbari S, Bayat E, Azizi M et al (2023) Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system. Appl Microbiol Biotechnol 107:769–783. https://doi.org/10.1007/s00253-022-12322-1
- Kalkan AK, Palaz F, Sofija S et al (2023) Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnol Adv 64:108115. https://doi.org/10.1016/j.biotechadv. 2023 108115
- Zhang L, Inniss MC, Han S et al (2015) Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 31:1645–1656. https://doi.org/10.1002/btpr.2175
- Baumann M, Gludovacz E, Sealover N et al (2017) Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol Bioeng 114:2616–2627. https://doi.org/10.1002/bit.26388

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

