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Abstract

The mouse ROSA26 locus serves as a port to maintain stable expression of the transgene. Therefore, a bacterial artificial
chromosome (BAC) containing the ROSA26 locus was used as a platform to produce proteins by incorporating transgenes
with foreign promoters. However, the endogenous promoter of the ROSA26 locus, which allows stable high-level transgene
expression, has not been applied to the ROSA26 BAC-based platform. In this study, we generated recombinant ROSA26
BAC by targeting “exon 1” or “intron 1” of the ROSA26 locus. Recombinant ROSA26 BAC (exon 1) had lower protein pro-
ductivity compared to the control. However, recombinant ROSA26 BAC (intron 1) produced protein at a higher efficiency
than the control group. The protein productivity induction effect by recombinant ROSA26 BAC (intron 1) was maintained
up to a single clone, enabling stable protein production over a long period of time. Taken together, we established a ROSA26
BAC-based protein production system capable of producing protein at high yield over a long period of time.
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1 Introduction

One of the platforms used for protein production is based
on plasmids [1]. Plasmid-based vectors continue to exist as
extrachromosomally replicating episomes after transfection,
enabling highest levels of gene expression between 24 and
96 h [1]. However, due to limited episomal stability, the
expression level of the transgene gradually decreases [2—4].
To avoid these drawbacks, a process of selecting clones with
desirable characteristics should be performed, which is both
labor-intensive and time-intensive [5]. However, even after
the establishment of a stably transfected clone, the chromatin
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surrounding the transgenic integration site, have a signifi-
cant impact on the expression of the transgene (i.e., posi-
tional chromatin effects) [6]. Based on these findings, there
were doubts about the use of the widely used plasmid-based
vector systems for protein production [7, 8]. A new vector
platform called bacterial artificial chromosome (BAC) has
been used as a way to address positional chromatin effects.
A genomic region of 150-350 kb can be found in BAC,
which contains all cis-acting regulatory elements (insula-
tors, enhancers, promoters, etc.) [9]. Therefore, BAC is con-
sidered a safe expression unit that allows stable transgene
expression without disturbing the nearby chromatin where
integration occurs [10].

Through gene trapping, the ROSA26 locus was discov-
ered on mouse chromosome 6 [11]. The ROSA26 locus
maintained long-term gene expression and exhibited
resistance to gene silencing, allowing the transgene to be
expressed constitutively in vivo. To date, more than 560
knock-in lines at the ROSA26 locus have been generated
in mouse [12]. ROSA26 BAC containing the ROSA26
locus also has been alternatively used to generate animal
models [13-15]. The transgene inserted into the ROSA26
locus in the ROSA26 BAC accurately mimicked the original
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expression pattern of ROSA26 locus and had little inter-
ference with the chromatin region surrounding the inser-
tion site [14]. The proven utility of ROSA26 BAC has also
been applied to produce recombinant proteins in mamma-
lian cells [16—18]. The result that the ROSA26 BAC-based
protein production platform improved protein production by
10 times compared to existing vector systems supports its
importance as a protein production platform [18]. However,
the ROSA26 BAC-based platform used a cytomegalovi-
rus (CMV) immediate enhancer/p-actin (CAG) promoter
instead of the endogenous promoter of the ROSA26 locus
[18]. Exogenous promoters such as CMV and CAG do not
have the characteristics of the endogenous promoter of the
ROSA26 locus, which has the ability to maintain long-term
gene expression [19]. Since maintaining gene expression for
a long period of time is considered the most important factor
in protein production [2, 20, 21], building a platform using
the endogenous promoter of the ROSA26 locus has become
the most urgent value in the biopharmaceutical industry.

ROSAZ26 locus consists of three exons (exon 1, 2 and 3)
and two introns (intron 1 and 2) [11]. Among them, exon 1
contains the start codon of the ROSA26 gene. The region
containing the start codon is commonly targeted to generate
knock-in animals, because transgenes inserted in this region
can be influenced by the endogenous promoter [22-24].
Intron 1 of the ROSA26 gene is the site where the promoter-
less p-galactosidase/neomycin resistance fusion gene (fgeo)
was originally inserted in trapping experiments, allowing
stable and ubiquitous expression of the inserted transgene
[25-27].

In this study, we established two versions of recombinant
ROSA26 BAC targeting exon 1 or intron 1 to evaluate the
performance of the endogenous promoter of the ROSA26
locus. Among them, we found that the recombinant ROSA26
BAC targeting intron 1 enabled consistently high yields of
protein production. Here, we propose an improved recom-
binant protein production platform using the endogenous
promoter of the ROSA26 locus in mammalian cells.

2 Material and methods

2.1 Construction of targeting vector, control vector
and helper vector

A recombinant plasmid was established by conven-
tional cloning methods. A targeting vector against
exon 1 of ROSA26 locus was designed where 5' exon
1 homology region (HR) and 3' exon 1 HR. The loca-
tion of 5' exon 1 HR in the mouse genome was chr6:—
strand 113054085-113054184. The location of 3'
exon 1 HR in the mouse genome was chr6:—strand
113053585-113054084. A targeting vector against intron
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1 of ROSA26 locus was designed where 5' intron 1 HR
and 3' intron 1 HR. The location of 5' intron 1 HR in the
mouse genome was chr6:—strand 113052993-113053478.
The location of 3" intron 1 HR in the mouse genome was
chr6:—strand 113052487-113052969. Utilizing the CamR
targeting vector (131590; Addgene), the Tol2 transpo-
son system was recombineered into the chloramphenicol
resistance (CamR) region [17]. Specifically, the ampi-
cillin resistance (AmpR) gene, the neomycin resistance
(NeoR) gene, the 5" and 3’ CamR HRs, and two inverted
terminal repeats (ITRs) were all included in the construc-
tion of the CamR targeting vector. In the control vector,
CMYV promoter-driven luciferase gene was included [17].
Helper vectors designed to bind to ITRs encode the Tol2
transposase [28, 29]. Helper vectors were linearized and
transcribed to produce helper mRNA using the MEGAs-
criptTM T7 Transcription Kit (AM1333; Thermo Fisher
Scientific) according to the company's protocol [29].

2.2 BACrecombineering

ROSA26 BAC clone (RP24-85L.15, BACPAC Resource
Center) was used for BAC recombineering. When per-
forming BAC recombineering, the A red recombination
approach was used [30]. Specifically, the A red recom-
bination method specifically regulates the expression of
the lambda-red recombinase via a temperature-sensitive
lambda repressor [31, 32]. The lambda-red recombinase
system was added to a genetically engineered SW 105 bac-
terial strain. This strain contains the PL operon encoding
the lambda-red recombinase exo, bet, and gam, which are
essential for the recombination process. The temperature-
sensitive lambda repressor tightly regulates the PL operon
(cI857). cI857 is activated at low temperatures (30-34 °C)
and binds to the operator site, silencing recombinant gene
transcription. A thermal shift to 42 °C reversibly inhib-
its cI857 activity, thereby activating the transcription of
recombinant gene. Recombination then occurs.

2.3 Cell culture

CHO DG44 cells (A1100001; Thermo Fisher Scientific)
were cultured as described in previous studies [29]. Spe-
cifically, CHO DG44 cells were maintained in Dulbecco's
modified Eagle's medium containing 25 mM glucose,
10% fetal bovine serum (SH30919.03; Hyclone), 10 mM
sodium hypoxanthine, 1.6 mM thymidine (2,068,642;
Gibco), 100 U/mL penicillin, and 100 pg/mL streptomycin
(SV30079.01; Hyclone). Cells were cultured at ambient air
(20% O,) with 5% CO,. Using a Cedex HiRes Analyzer
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(05650216001; Roche), cell density and viability were
measured.

2.4 Transfections and cell line development

Control vector and recombinant ROSA26 BAC were trans-
fected into cells at a DNA copy ratio of 1:1. Specifically,
5% 10° cells were transfected with 0.3 pg control vec-
tor (size: 7,123 bps) or 6 pg recombinant ROSA26 BAC
(size: 222,649 bps). 0.667 pg helper mRNA was transfected
together with 6 pg recombinant ROSA26 BAC. Then, the
cell line development process proceeded as previously
described [29].

2.5 Measurement of luciferase activity

Luciferase activity was analyzed as described previously
[17]. Briefly, luciferase activity was assessed using a lucif-
erase assay kit (E1500; Promega). Cell counts were deter-
mined using a Cedex HiRes Analyzer. Cells (2 x 10°) were
centrifuged at 200 X g for 2 min and washed twice with phos-
phate-buffered saline (PBS). Cells were shaken in 100 pL
of PBS and 100 pL of 1 Xxcell culture lysis reagent. White
96-well plates (30,396; SPL Life Sciences) were used, and
the lysed samples (100 pL) were added to each well. Then,
100 pL of luciferase assay reagent II was added to each well.
Luciferase activity was measured on a VICTOR multilabel
plate reader (2030-0050; PerkinElmer).

2.6 Quantitative polymerase chain reaction (qPCR)

gPCR using mRNA or genomic DNA was conducted as
described previously [17]. More specifically, the follow-
ing primers were used in qPCR: 5'-GCACCACCAACT
GCTTAGC-3' (GAPDH-forward), 5'-AGTCTTCTGGGT
GGCAGTGA-3' (GAPDH-reverse), 5'-AGGAGATACGCC
CTGG-3' (luciferase-forward), and 5'-AATAACGCGCCC
AACA-3' (luciferase-reverse).

2.7 Western blot analysis

Western blotting was done in accordance with earlier
instructions [33]. HRP-conjugated anti-luciferase antibody
(sc74548; 1:1,000 dilution; Santa Cruz Biotechnology) and
HRP-conjugated anti-B-actin antibody (sc47778; 1:1,000
dilution; Santa Cruz Biotechnology) were utilized.

2.8 Determination of relative cell-specific
productivity (Qp)

Relative Qp (pg/cell/day) in media was determined by
calculating the relative activity of secreted luciferase pro-
tein in the medium. To quantify the amount of luciferase

activity in the medium, 100 pL of medium samples were
placed into each well of a white 96-well plate (30,396; SPL
Life Sciences). After adding 100 pL of Luciferase Assay
Reagent II to each well, luciferase activity was assessed
using a VICTOR multilabel plate reader (2030-0050;
PerkinElmer). Cell viability and density were measured
using a Cedex HiRes Analyzer (05650216001; Roche).
Qp was calculated according to the method proposed in a
previous study [34].

2.9 Statistical analyses

Statistical analysis used Student's 7-test or two-way
ANOVA followed by Bonferroni's post hoc test.

3 Results

3.1 Establishment of recombinant ROSA26 BAC
(exon 1)

To evaluate the performance of the endogenous promoter
of the ROSA26 locus, a region within ROSA26 exon 1
containing the start codon of ROSA26 gene (chr6:—strand
113052487-113053478) was selected for targeting of
the transgene (Fig. 1a). BAC targeting vector contained
5"exon 1 HR and 3’ exon 1 HR (Fig. 1a). To assess the
activity of the promoter, the luciferase gene was inserted
between the 5’ exon 1 HR and 3’ exon 1 HR (Fig. 1a). The
luciferase gene was placed followed by the splice accep-
tor sequence (SA) as found in the original gene trapping
vector (Fig. 1a) [35]. To facilitate genomic integration of
the ROSA26 BAC, the Tol2 transposon system was intro-
duced into the CamR region (Fig. 1a). For incorporation
of the Tol2 transposon system into the CamR region, a
CamR targeting vector containing “5’ CamR HR & 3’
CamR HR” and a pair of ITR was used (Fig. 1a). After the
BAC recombineering process, the recombination region
was confirmed through DNA sequence analysis. Sequence
analysis of the recombinant ROSA26 BAC (exon 1) dem-
onstrated the presence of the recombinant sequence, pro-
viding evidence that homologous recombination was suc-
cessfully achieved (Fig. 1b).

As a comparison group for the experiment, a control vec-
tor carrying a CMV promoter-driven luciferase gene was
used [17]. Recombinant ROSA26 BAC (exon 1) or control
vector were transiently transfected into cells. The luciferase
activity in recombinant ROSA26 BAC (exon 1) was sig-
nificantly lower than that in the control vector (Fig. lc).
These results indicate that the exon 1 region used to gener-
ate knock-in mice was not suitable for protein production in
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Fig. 1 Establishment of recombinant ROSA26 BAC (exon 1). a A
schematic representation of a BAC targeting vector and a CamR tar-
geting vector. BAC targeting vector contained 5’ exon 1 HR and 3’
exon 1 HR. To assess the activity of the promoter, the luciferase gene
was inserted between the 5’ exon 1 HR and 3’ exon 1 HR. The lucif-
erase gene was placed followed by the splice acceptor sequence (SA)
as found in the original gene trapping vector. CamR targeting vec-

mammalian cells. These results also mean that in order to
create a protein production platform using ROSA26 BAC, a
region other than exon 1 should be targeted.

3.2 Establishment of recombinant ROSA26 BAC
(intron 1)

The intron 1 region in ROSA26 locus was also used
frequently to generate knock-in mice [25-27]. There-
fore, a region within ROSA26 intron 1 (chr6:—strand
113052487-113053478) was selected for targeting of the
transgene (Fig. 2a). Specifically, BAC targeting vector
contained 5’ intron 1 HR and 3’ intron 1 HR (Fig. 2a). To
assess the activity of the promoter, the luciferase gene was
inserted between the 5' intron 1 HR and the 3" intron 1 HR
(Fig. 2a). SA was inserted in front of the luciferase gene
(Fig. 2a). To facilitate genomic integration of the ROSA26
BAC, the Tol2 transposon system was introduced into the
CamR region (Fig. 2a). After the BAC recombineering
process, the recombination region was confirmed through
DNA sequence analysis. Sequence analysis of the recom-
binant ROSA26 BAC (intron 1) demonstrated the pres-
ence of the recombinant sequence, providing evidence
that homologous recombination was successfully achieved
(Fig. 2b).

Recombinant ROSA26 BAC (intron 1) or control
vector were transiently transfected into cells. The lucif-
erase activity in recombinant ROSA26 BAC (intron 1)
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tor contained “5' CamR HR & 3' CamR HR” and a pair of inverted
terminal repeats (ITR). b Sequence analysis of the recombinant
ROSA26 BAC (exon 1) demonstrated the presence of the recombi-
nant sequence. ¢ The luciferase activity in recombinant ROSA26
BAC (exon 1) was significantly lower than that in the control vector.
*##p <(0.01, Student's r-test. Mean+SD, N=3. BAC: bacterial artifi-
cial chromosome, HR: homology region

was significantly higher than that of the control vector
(Fig. 2c). These results indicate that the intron 1 region
was suitable as a targeting region for protein production
in mammalian cells.

3.3 Underlying mechanism for increased protein
production by recombinant ROSA26 BAC (intron
1)

We then investigated how recombinant ROSA26 BAC (intron
1) led to high-yield protein production. Because increased
integration of the transgene into the genome is a prerequisite
for high yield protein production [17, 29, 36], the integrated
copy number of recombinant ROSA26 BAC (intron 1) into
the genome was compared with that of the control vector.
Compared with the control vector, the recombinant ROSA26
BAC (intron 1) significantly increased transformant integration
by 1.57-fold (Fig. 3a). Next, we assessed whether increased
transgene integration into the genome led to increased
transgene expression. Indeed, compared with the control
vector, recombinant ROSA26 BAC (intron 1) significantly
increased transgene expression by 9.33-fold (Fig. 3b). Finally,
Western blotting was performed to assess whether increased
transgene expression led to increased protein production.
Compared to the control vector, recombinant ROSA26 BAC
(intron 1) markedly increased luciferase protein production by
5.7-fold (Fig. 3c).
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Fig.2 Establishment of recombinant ROSA26 BAC (intron 1). a A
schematic representation of a BAC targeting vector and a CamR tar-
geting vector. BAC targeting vector contained 5’ intron 1 HR and 3’
intron 1 HR. CamR targeting vector contained “5' CamR HR & 3’
CamR HR” and a pair of inverted terminal repeats (ITR). CamR tar-
geting vector contained “5' CamR HR & 3' CamR HR” and a pair of

ITR. b Sequence analysis of the recombinant ROSA26 BAC (intron
1) demonstrated the presence of the recombinant sequence. ¢ The
luciferase activity in recombinant ROSA26 BAC (intron 1) was sig-
nificantly higher than that of the control vector. *p <0.05, Student's
t-test. Mean+ SD, N=3. BAC: bacterial artificial chromosome, HR:
homology region
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Fig.3 Underlying mechanism for increased protein production by
recombinant ROSA26 BAC (intron 1). a The relative copy number
of integrated transgene in cells transfected with control vector or
recombinant ROSA26 BAC (intron 1). *p<0.05, Student's t-test.
Mean +SD, N=3. b The relative transgene expression in cells trans-

3.4 Maintaining productivity-enhancing effect
of recombinant ROSA26 BAC (intron 1) in single
clones

Generating a single clone from a pool is an essential process
to meet regulatory standards, as it ensures monoclonality

fected with control vector or recombinant ROSA26 BAC (intron 1).
*p <0.05, Student's #-test. Mean + SD, N=3. ¢ Western blot analysis
to evaluate protein production in cells transfected with control vec-
tor or recombinant ROSA26 BAC (intron 1). BAC: bacterial artificial
chromosome

and produces proteins consistently [37]. Therefore, a sin-
gle cell isolation procedure was performed. For each group,
thirty single clones were established (Fig. 4a). To evaluate
the performance of each single clone, we used Qp, which
quantifies the rate of protein production per cell and unit
of time (pg/cell/day) [38]. Qp is one of the most important

@ Springer



1030

M. U. Kuk et al.

Fig.4 Suitability of recom-
binant ROSA26 BAC (intron

1) for long-term protein
production. a Maintaining
productivity-enhancing effect
of recombinant ROSA26 BAC
(intron 1) in single clones. Each
dot represents the cell-specific
productivity (Qp) of single
clones. The horizontal bar indi-
cates the average of Qp for each
condition. **p <0.01, Student's
t-test. Mean+SD, N=30. b To
perform batch culture-based
stability tests, luciferase activ-
ity was measured for 24 days.
**p <0.01, two-way ANOVA
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parameters used when comparing the performance of protein
production platforms [39, 40]. Single clones generated with
the recombinant ROSA26 BAC (intron 1) showed signifi-
cantly higher Qp compared to clones generated with con-
trol vector (Fig. 4a). These findings demonstrate that the
productivity-enhancing effects of the recombinant ROSA26
BAC (intron 1) persisted in single clones. The maintenance
of increased productivity even in single clones suggests that
the recombinant ROSA26 BAC (intron 1) could be a next-
generation platform in protein production.

3.5 Suitability of recombinant ROSA26 BAC (intron
1) for long-term protein production

The urgent research goal in the field of biopharmaceutics
is to develop a system capable of continuous and efficient
protein production [2, 20, 21]. Therefore, we investigated
whether recombinant ROSA26 BAC (intron 1) could main-
tain high levels of protein production for long periods of
time. The suitability of recombinant ROSA26 BAC (intron
1) was assessed in batch culture experiments for 24 days.
During 24 days of culture, recombinant ROSA26 BAC
(intron 1) showed significantly higher luminescence com-
pared to the control vector (Fig. 4b). These findings suggest
that recombinant ROSA26 BAC (intron 1) is a suitable plat-
form for biopharmaceutical production that requires long
culture periods.

4 Discussion
Increasing protein production in mammalian cells is one of
the most interesting research goals in the biopharmaceu-

tical industry [41, 42]. Various strategies have been tried
to enhance protein productivity, including modification of
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media components, host cell engineering, and vector engi-
neering [43, 44]. Among them, the most efficient way to
increase protein productivity is to modify vectors and apply
them to protein production [20, 45-47]. ROSA26 BAC con-
taining the ROSA26 locus has recently attracted attention
as a platform for producing recombinant proteins in mam-
malian cells [16—18]. For example, recombinant ROSA26
BAC was constructed for production of human IgG1 con-
stant region [18]. The control vector produced 0.5 pg/cell/
day of human IgG1 constant region in the supernatant,
whereas the recombinant ROSA26 BAC produced 5.7 pg/
cell/day [18]. Another recombinant ROSA26 BAC was con-
structed for the scFc antibody (fusion of the single-chain
fragment variable [GenBank: CAA01551] to the human
IgG1 Fc region [GenBank: CAA49866]) [10]. The control
vector produced 0.6-9.5 pg/cell/day of scFc antibody in
the supernatant, whereas the recombinant ROSA26 BAC
produced 10-30 pg/cell/day [10]. However, the ROSA26
BAC-based expression method uses exogenous promoters
such as CMV and CAG, instead of the endogenous pro-
moter of the ROSA26 locus [10, 16—18]. The endogenous
promoter of the ROSA26 locus is worthy of application in
protein production platforms because it enables sustained,
high-efficiency gene expression. In this study, we established
two ROSA26 BAC-based protein production platforms using
the endogenous promoter of the ROSA26 locus. First, we
targeted exon 1 (chr6:—strand 113,052,487-113053478)
containing the start codon of the ROSA26 gene, because
targeting the start codon region is a commonly used strategy
to generate knock-in animals [22-24]. Therefore, the recom-
binant ROSA26 BAC (exon 1) inserted the start codon of
the luciferase gene into the original start codon position of
the ROSA26 gene, so that the expression of the luciferase
gene was influenced by the endogenous ROSA26 promoter.
However, the recombinant ROSA26 BAC (exon 1) did not
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induce the production of luciferase protein. This may be
due to the nature of the ROSA26 region encoding noncod-
ing RNA that is transcribed but not translated [35]. Second,
we targeted intron 1 of the ROSA26 locus (chr6:—strand
113,052,487-113053478) because insertion of a promoter-
less Pgeo into intron 1 resulted in constitutive expression of
Bgeo under the influence of the endogenous ROSA26 pro-
moter [35]. Thus, intron 1 in ROSA26 locus is the target
region used to generate knock-in animals in mice and other
species [25-27]. The recombinant ROSA26 BAC (intron 1),
targeting intron 1 of the ROSA26 locus, induced 5.7-fold
higher protein production compared to the control vector.
Furthermore, the productivity improvement effect achieved
by recombinant ROSA26 BAC (intron 1) was maintained
up to single clones. This study is the first to use the intron
1 region of the ROSA26 locus as an endogenous promoter
to increase protein production in mammalian cells. Here
we propose to use the recombinant ROSA26 BAC (intron
1) as a next-generation protein production platform. This
platform will serve as a driving force to increase the price
competitiveness of biopharmaceuticals in response to the
needs of the biopharmaceutical industry that requires high
productivity.

Maintaining consistent protein production over long peri-
ods of time is one of the most challenging goals in biophar-
maceutical production when the use of antibiotic selection
is not applicable [2, 20, 21]. Various attempts have been
made to achieve a sustainable production, but they have
not been effective. For example, the plasmid vector-based
protein production platform failed to achieve a consistently
high level of protein production because the expression of
gene significantly decreased with each generation [48-50].
To address these potential shortcomings, the use of site-
specific integration (SSI) for cell line development has been
proposed [51]. Integration of the transgene into a genomic
hotspot that allows consistent expression via SSI allowed the
generation of stable isogenic clones that maintain consist-
ent protein production over long periods of time [51-54].
However, SSI can only integrate at most two copies of the
transgene into the host genome, resulting in low protein pro-
ductivity [51, 55]. In this study, we found that protein pro-
ductivity improvement by the recombinant ROSA26 BAC
(intron 1) was observed up to single clones. Extending the
relevance of these findings, recombinant ROSA26 BAC
(intron 1) continued to maintain higher luciferase activity
than the control vector even over 24 days. Ultimately, our
findings indicate that recombinant ROSA26 BAC (intron 1)
is the most suitable platform for biopharmaceutical produc-
tion that requires prolonged culture periods where antibiotic
selection is not applied.

In summary, we created a recombinant ROSA26 BAC
(intron 1)-based protein production platform utilizing the
endogenous promoter of the ROSA26 locus. This platform

increased the expression of the transgene and ultimately
increased protein production. Additionally, the effect of this
platform on increasing protein production remained constant
over long culture times. Therefore, our results suggest that
this new platform can ultimately be applied to large-scale
biopharmaceutical production by solving unresolved prob-
lems in the biopharmaceutical industry.
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